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1 Introduction

The Harmonic Oscillator (sometimes called the Simple Harmonic Oscillator, or SHO) plays a central role in mod-

ern physics and technology. For example, the mathematics of harmonic motion can be used to describe the behavior

of mechanical systems, electromagnetic systems, quantum mechanical systems, acoustic systems, and a broad range

of other physical phenomena. Moreover, this same mathematics provides the foundation for the development of

many fundamental topics in theoretical physics, including wave mechanics, quantum mechanics, and quantum field

theory.

The simple mechanical harmonic oscillator is a topic going back hundreds of years, yet even here modern in-

carnations abound. The realization of microfabricated high-Q mechanical oscillators showing quantum behavior

is currently a very hot topic, with many scientific groups exploring this technology and its potential applications.

High-Q mechanical oscillators made from small plates of quartz crystal also form the foundation of timekeeping and

frequency reference in electronic devices. Essentially very cell phone, timepiece, microwave transmitter, computer,

and many other electronic devices contain quartz crystal oscillators, and they are currently being manufactured at a
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Figure 1. Basic terminology and notation for simple harmonic motion. (Image source:
http://hyperphysics.phy-astr.gsu.edu/hbase/shm.html)

rate of about two billion units per year.

The focus of the Magneto-Mechanical Harmonic Oscillator (MMHO) experiment is on understanding the Har-

monic Oscillator, using a large-scale example where one can see rather directly how it responds to various stimuli.

2 The Simple Harmonic Oscillator

Before we look at the specific apparatus, let us first review the mathematics of simple harmonic motion, thereby

defining our variables and examining how oscillators behave. We begin with the canonical example of a mass on

a spring, as shown in Figure 1. One thing that makes this a simple harmonic oscillator is that we assume a purely

linear, Hooke’s-law spring constant, giving a restoring force  = − where  is a constant. We also neglect the

mass of the spring, so the load mass  is a simple constant. In the absence of any damping, the equation of motion

for this system is then

 =  = −

2

2
= ̈ = −

̈+  = 0

Solutions to this equation are of the form

() = 1 cos(0) + 2 sin(0) (1)

where

0 =

r



(2)

while 1 and 2 are arbitrary constants. The constant 0 = 02 is called the resonant frequency of the oscillator,

measured in Hertz. (The constant 0 is also sometimes called the resonant frequency, although more precisely 0

is the resonant angular frequency, this being measured in radians per second. Frequency measurements are usually

reported in Hertz, while 0 is often more convenient for doing theory.) Note that the equation of motion is often
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written in the convenient form

̈+ 20 = 0 (3)

The general theory of differential equations (not covered here!) tells us that Equation 1 is the full and unique

solution to this equation of motion. All we need to supply is the appropriate choice of 1 and 2 For example, if we

know the initial position ( = 0) and velocity ̇( = 0) then plugging in these initial conditions allows us to solve

for 1 and 2 and from this we can predict the motion () for all future times.

We often use complex notation when talking about harmonic oscillators, for reasons described in the Appendix

below. The (complex) solution to Equation 3 is () = ̃0 where ̃ is a complex constant, as the reader can

quickly verify. The physical solutions are then either the real or imaginary parts of the complex solution, giving two

arbitrary constants (the real and imaginary parts of ̃) and these constants are related to the 1 and 2 in Equation

1. The complex notation is often exceedingly useful because of its simplicity (dealing with  is less cumbersome

compared with sines and cosines), and we will see this more below. But one should note that this is a bit of a

shorthand notation, which can lead to problems. In the final analysis it is the real, physical, solutions that describe

the system.

2.1 Energetics

Consider the general oscillator solution in Equation 1, which we can also write in the form () =  sin(0 + )

where  and  are real constants. The kinetic energy of the mass motion is

 =
1

2
2 =

1

2
̇2

=
1

2
20

2 cos2(0+ )

and the potential energy stored in the spring is

 =

Z 

0

 (0)0 =
Z 

0

00

=
1

2
2

=
1

2
2 sin2(0+ )

=
1

2
20

2 sin2(0+ )

where we used Equation 2 to obtain the last expression.

From these we see that the total energy

 =  + (4)

=
1

2
20

2

is independent of time. As the mass oscillates, energy sloshes back and forth between kinetic energy and potential

energy.

3 The Damped Harmonic Oscillator

We add damping to our simple harmonic oscillator using the damping force  = −̇ where  is a constant. (It

is possible that  is not constant in some physical systems; in this case the system cannot be described as a simple

harmonic oscillator.) The equation of motion ( = ) then becomes

̈ = −− ̇ (5)

̈+ ̇+  = 0
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which is often written

̈+ Γ̇+ 20 = 0 (6)

where Γ =  and again we use 20 = 

To solve Equation 6, we try a solution of the form  = ̃ where ̃ is a complex constant and  is a real

constant. Plugging this in gives ¡−2 + Γ+ 20
¢
 = 0

Assuming  6= 0 we have

2 − Γ− 20 = 0

and solving this quadratic equation gives

 =
Γ

2
±
r
20 −

Γ2

4
(7)

So our final real solution is  = Re[̃] where ̃ is a complex constant and  is given by Equation 7.

At this point we will limit ourselves to the regime Γ2  420 which is called the underdamped case. In this case

the test mass oscillates away, as in the zero damping case, but the oscillations slowly decrease in amplitude with

time, eventually settling to  = 0 The opposite limit, Γ2  420 is called the overdamped case, and here the test

mass simply damps down without oscillating, like a pendulum in molasses. The cross-over, Γ2 = 420 is called the

critically damped case. Most modern science and technology applications focus on underdamped oscillators, and the

MMHO was designed to explore this regime in depth.

To simplify the notation a bit, we define the damped oscillator frequency  where

2 = 20 −
Γ2

4
and we further define the decay time 

 =
2

Γ
so we can write the full (still complex) solution

() = ̃− ±

where ̃ is a complex constant while  and  are both real numbers. Converting to only real quantities, the full

solution becomes

() = 1
− cos() + 2

− sin() (8)

where 1 and 2 are real constants. And again, these constants are determined by the initial conditions of our

oscillator – the position and velocity at  = 0 This solution can also be written

() = 3
− cos(+ )

where now 3 and  are real constants. One can expand cos(+ ) to find the relationship between (1 2) and

(3 ), so either set of constants can be derived from the other.

Broadly speaking, the underdamped oscillator looks a lot like the undamped oscillator, except that the amplitude

of the oscillations decays exponentially with a time constant 

3.1 The Quality Factor

We also define a quality factor  for the oscillator,

 = 
Decay Time

Resonant Period

= 


2

 =


2
=



Γ
Note that is a dimensionless number, roughly equal to the number oscillation cycles that occur before the amplitude

decays away. (More precisely, the amplitude decays to − times its original value after  cycles.) This is often
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written as

 = 2
Energy Stored

Energy Loss per Cycle
and the reader can verify that these two definitions are the same.

The MMHO is a damped harmonic oscillator with   100 In this case we can expand  for small −1 giving

 =

µ
20 −

Γ2

4

¶12
= 0

µ
1− Γ

2

420

¶12
≈ 0

µ
1− 1

22

¶
What this means is that  will equal 0 to better than a part in 104 and such a small difference will be negligible

in this experiment. We will therefore assume  = 0 in the discussion that follows, and this greatly simplifies the

math. The quality factor  can then be written

 =
0

2
=

0

Γ

=
20

Γ
= 0

Note that the quality factor  and the damping constant Γ are related. For an underdamped oscillator, we can

talk about the damping constant Γ or the decay time  or the quality factor  They all refer to basically the same

thing, that the oscillation amplitude decays away with time. A good tuning fork might have a  of several thousand,

and mechanical oscillators with   106 are not uncommon these days in high-tech applications.

4 The Driven Harmonic Oscillator

Finally, we take the last step and drive our oscillator with a sinusoidal force  () =  cos, giving the

equation of motion

̈+ Γ̇+ 20 = () cos (9)

The force is often written as a complex expression  () = 
 (where  is still a real number), giving

the complex equation of motion

̈+ Γ̇+ 20 = () 
 = 1

 (10)

where we have defined a normalized force 1 = .

To solve this equation, we try a solution of the form () = ̃ where ̃ is a complex constant, and plugging

this in gives ¡−2 + Γ+ 20
¢
̃ = 1

 (11)

̃ =
1

(20 − 2) + Γ

4.1 The Full Solution

The solution shown in Equation 11 is called a particular solution to the equation of motion; it is not the full solution.

The full, real solution to Equation 10 can be written:

() = Re

∙
̃−  +

1

(20 − 2) + Γ


¸
where ̃ is a complex constant that depends on the initial conditions. We will not prove here that this is the full,

unique solution; that is a task for a course in differential equations. For now we just note that this () does satisfy

Equation 10, and it contains two real constants (the real and imaginary parts of ̃) that we adjust to satisfy the initial
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conditions.

4.2 The Steady-State Response Function

The full solution is complicated, but you can see that for À  the first term goes to zero. When À  we are left

with the steady-state solution

() = Re

∙
1

(20 − 2) + Γ


¸
(12)

Note that in steady-state () oscillates at the drive frequency  (as seen by the  term), which is generally not

equal to the resonant frequency 0 Note also that the steady-state solution is independent of ̃ which means that in

steady-state the motion of the oscillator no longer depends on the initial conditions.

To summarize, if we drive our oscillator with an applied force  () =  cos, the resulting motion of the

oscillator can be written () =  cos(+ ) where  and  are real constants and

 =

¯̄̄̄
1

(20 − 2) + Γ

¯̄̄̄
You can see immediately from this expression that if you drive the oscillator near its resonant frequency ( ≈ 0)

then the oscillation amplitude will be high. If you drive it far away from resonance, the amplitude will be lower.

Expanding this expression gives

 =

s
1

(20 − 2) + Γ
· 1

(20 − 2)− Γ



1
=

1q
(2 − 20)

2
+ (Γ)

2

42


1
=

1q
(2 − 20)

2
+ (Γ2)

2

This function is sometimes called the response function of the oscillator. It gives the amplitude of the oscillations

as a function of the drive frequency.

4.3 Steady-State Behavior Near Resonance

When the drive frequency is near resonance, we can write  = 0 +∆ (or  = 0 + ∆) and expand for small

∆ giving

20 − 2 = (0 + ) (0 − )

≈ −20∆
and the response function becomes



1
≈ 1

20

1q
(∆)

2
+ Γ24

(13)

42


1
≈ 1

20

1q
(∆)

2
+ (Γ4)

2

which is a Lorentzian function.

Note that the amplitude peaks when the oscillator is driven at its resonant frequency ( = 0∆ = 0) giving

on resonance =
1

0Γ
=



20
1 =



20


From this we see that the amplitude of a driven oscillator is proportional to  when driven on resonance. With a very

high quality factor, only a small driving force is needed to produce a large oscillation amplitude.
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4.4 Steady-State Behavior Far From Resonance

If we drive the oscillator at frequencies far below resonance, the amplitude of the oscillator becomes

static ≈ 1

20
1 =

1

20


This low-frequency limit essentially gives us the static response of the oscillator. We can also get this by going all

the way back to the beginning of our discussion. Hooke’s law gives a restoring force − Setting this equal to the

applied force gives  =  so  =  = 20

If we drive the oscillator at frequencies far above resonance, the response becomes

highfrequency ≈ −1
2
= −

2
(14)

This is exactly what happens when you apply a sinusoidal force to a free mass. Newton’s law for a free mass is

simply (with no restoring force and no damping)

̈ =  cos()

Assuming a solution () =  cos() gives

−2 cos() =  cos() (15)

highfrequency = −
2

4.5 Phase Information

It is also instructive to look at the steady-state phase of the driven oscillator relative to the phase of the applied force

 () At low frequencies, we saw in the last section that  is simply proportional to  meaning that the

oscillator displacement is in phase with the drive. On the other hand, far above the resonance frequency, Equation 15

tells us that  is 180 degrees out of phase with the drive. When we are pushing to the left, the position of the mass is

to the right, and vice versa.

When the applied force is on resonance, we have to go back to the complex amplitude in Equation 11, which

becomes

̃ =
1

Γ
and this tells us that the oscillator position is 90 degrees out of phase with the drive. Thus we see the transition –

from in-phase at low drive frequencies (the static response), to 90 degrees out of phase on resonance, to 180 degrees

out of phase at high drive frequencies (the free-mass response).

5 The Torsional Oscillator

The MMHO is a torsional oscillator, which is a special form of a simple harmonic oscillator. In a torsional oscil-

lator, linear motion is replaced by angular motion. So the displacement () is replaced by the angular displacement

() Newton’s law  =  is replaced by its torque version

 = ̈

where ̈ = 22 is the angular acceleration, and  is the mass moment of inertia The restoring force becomes a

restoring torque

 = −
The math all follows exactly the same as it did above, giving us a resonance frequency 0 a decay time  a quality

factor  etc. The resonant frequency in the torsional case, for example, becomes

0 =

r



(16)
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If we drive the oscillator with a sinusoidal torque, () =  cos then the steady-state response can be

written () =  cos(+ ) and we again obtain the response function described above.

6 Magnetic Drive

Since the test mass in the MMHO includes a permanent magnet, we can drive the torsional oscillator magnetically.

If we create a magnetic field () at the position of the test mass, then the torque on the test mass is

() = × ()

where  is the magnetic moment of the magnet. With a sinusoidal current applied to the drive coil, this becomes

() = 00 cos  cos ()

where 0 is the size of the magnetic moment and 0 is the amplitude of the oscillating magnetic field. For small

oscillation amplitudes, we can use the small-angle approximation cos  ≈ 1 giving a simple sinusoidal driving

torque

() = 00 cos ()

7 Adding a Magnetic Restoring Force

In the MMHO it is also possible to apply a magnetic restoring torque, adding this to the restoring torque from the

support wires. If we apply a constant magnetic field of strength 0 in the  = 0 direction (from the bias coils), then

the magnetic torque on the test mass is

 = × 

= −00 sin 
where  is the angular position of the test mass. Using the small-angle approximation sin  ≈  we can write the

total restoring torque

 = −0 − 00

= −(0 + 00)

= −
where 0 is the magnetic moment of the test mass and 0 is the spring constant provided by the support wires. With

a nonzero 0 the resonant frequency of the oscillator becomes

0 =

r




and for small 0 the frequency change is

∆0 ≈ 1

2

³


´−12
∆

∆0

0
≈ 1

2

∆



≈ 1

2

00

0

This change in the resonant frequency of the oscillator allows you to measure the magnetic moment of the test

mass. You first calculate , then combine this with the known resonant frequency 0 to determine 0 Then you

measure∆00 as a function of the applied 0 to determine 0
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8 Appendix: Using Complex Functions to Solve Real Equations

Physicists and engineers often use complex functions to solve real equations, with the understanding that you

take the real part at the end. Why does this work? And why do we even do this? We can demonstrate with the simple

harmonic oscillator. Start with the equation of motion ̈+ 20 = 0 and let us solve this using a complex function:

 = +  where () and () are real functions. If you plug this in, you will see that ̈+ 20 = 0 becomes³
̈+ ̈

´
+ 20 (+ ) = 0 (17)¡

̈+ 20
¢
+ 

³
̈ + 20

´
= 0

Since a complex number equals zero only if both the real and imaginary parts equal zero, we see that ̈+ 20 = 0

implies that both ̈ + 20 = 0 and ̈ + 20 = 0 In other words, both the real and imaginary parts of () satisfy

the original equation.

So we have a procedure: try using a complex function to solve the original equation. If this works, then taking

the real part of the solution gives a real function that also solves the same differential equation. (If in doubt, then

verify directly that the real part solves the equation.)

Why do we go to the trouble of using complex functions to solve a real equation? Because differential equations

are often easier to solve when we assume complex functions (seems counterintuitive, but it’s true). The function 

is a simple exponential, and the derivative of an exponential is another exponential – that makes things simple. In

contrast, cosines and sines are more difficult to work with.

In the case of the simple harmonic oscillator, the solution () = ̃, where ̃ is complex, has a natural

interpretation. The length and angle of the ̃ vector (in the complex plane) give the amplitude and phase of the

oscillations.

You should note, however, that this only works for linear equations. If our equation were ̈ + 20 + 2 = 0

for example, then using complex functions would not have the same benefits. In fact, there is no simple solution to

this equation, complex or otherwise. This equation describes a nonlinear oscillator, and nonlinear oscillators exhibit

a fascinating dynamics with interesting behaviors that people still study to this day.
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